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Abstract

Learned image compression aims to reduce redundancy
by accurately modeling the complex signal distribution in-
herent in images with network parameters. However, ex-
isting practices that train models on entire dataset of-
fline face a limitation, as the estimated distribution only
approximates the general image signal distribution and
fails to capture image-specific characteristics. To ad-
dress this issue, we propose a cross-granularity online op-
timization strategy to mitigate information loss from two
key aspects: statistical distribution gaps and local struc-
tural gaps. This strategy introduces additional fitted bit-
stream to push the estimated signal distribution closer to
the real one at both coarse-grained and fine-grained lev-
els. For coarse-grained optimization, we relax the com-
mon bitrate constraints during gradient descent and re-
duce bitrate cost via adaptive QP (Quantization Param-
eter) selection, preventing information collapse and nar-
rowing the statistical distribution gaps. For fine-grained
optimization, a Mask-based Selective Compensation Mod-
ule is designed to sparsely encode structural characteris-
tics at low bitrates, enhancing local distribution alignment.
By jointly optimizing global and local distributions, our
method achieves closer alignment to real image statistics
and significantly enhances the performance. Extensive ex-
periments validate the superiority of our method as well as
the design of our module. Our project is publicly available
at: https://ellisonkuang.github.io/CGOO.github.io/.

1. Introduction

Image compression aims to reduce storage space and band-
width requirements while retaining as much critical visual
information as possible. It grows increasingly significant
with the ever-increasing demand for high-resolution and
high-quality images. The essence of image compression is
to estimate the distribution of the source signal by accu-
rately modeling the complex real-world signal distribution
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Figure 1. Workflow of our Cross-Granularity Optimization with
both coarse and fine-grained optimization. The coarse-grained op-
timization aligns the real distribution with the estimated sample
distribution of images on a global scale, while the fine-grained op-
timization further refines the alignment to minimize the gap by
compensating for local details.

unique to each image.
In recent decades, conventional image compression

methods like JPEG [37], JPEG2000 [28], and BPG [6] have
been widely used, which utilize key steps such as transfor-
mation, quantization, entropy coding and some prediction
methods to estimate the real distribution and remove redun-
dant information for efficient transmission. With the rapid
development of deep learning, many learned image com-
pression methods [11, 15, 25, 40] based on neural networks
are proposed. The pioneering approaches investigate us-
ing Generalized Divisive Normalization (GDN)-embedded
transform networks [2, 5] or develop recurrent architec-
tures [35] to enable variable-rate compression. Later re-
search focuses on integrating more advanced modules, such
as attention mechanisms [11] and transformer-based archi-
tectures [45, 46], to enhance learned image compression.
Additionally, efforts have been made to improve the ef-
ficiency of entropy coding, including the development of
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joint autoregressive and hyperprior models [31] along with
their related variants [29]. Different from conventional ap-
proaches, these learned image compression methods re-
place the step-by-step manual optimization with an end-to-
end learned network, achieving better rate-distortion opti-
mization performance.

However, both conventional methods based on manual
design and end-to-end methods that optimize rate-distortion
cost on entire dataset face challenges in perfectly matching
the distribution of each input image, resulting in a tendency
to fit average attributes rather than individual images, which
is called amortization effect [12]. Specifically, this gap is
reflected in two aspects: 1) the global gap caused by dif-
ferences in content and theme of images; 2) the local gap
related to fine structure and texture information, caused by
the quantization and randomness of the sampling process.

For the two levels of the distribution gap, conventional
coding techniques employ several technologies to transmit
additional pattern information or distribution parameters,
such as Adaptive Loop Filter (ALF) [44] for addressing the
global gap and Multiple Transform Selection (MTS) for the
local structural distribution gap, enabling sample-adaptive
modeling to reduce rate-distortion cost. And for the learned
image compression, some methods are proposed to perform
per-sample online optimization through online gradient de-
scent [38, 42] for each image or adaptive ensemble multi-
ple models [39]. However, in these methods, per-sample
optimization is performed only at the image level, aiming
to narrow the global gap. They do not consider the fine-
grained local structure distribution gap, which limits the in-
tegration and enhancement of learning capability and fine
detailed signal representation.

Our work aims to fill up this blank by introducing
a Cross-Granularity Online Optimization strategy into
learned image compression. Our general idea is to incorpo-
rate additional fitted bitstreams to bring the estimated sig-
nal distribution closer to the real one at both coarse and
fine-grained levels. In detail, for fine-grained optimization,
we introduce a sparse representation strategy and design
a Mask-based Selective Compensation Module to achieve
it in networks. By encoding diverse structural distribution
characteristics with network parameters, the signals can be
reconstructed with a sparse representation at a lower bi-
trate cost, efficiently compensating for fine-grained struc-
tural distribution information. For coarse-grained optimiza-
tion, we further improve the existing gradient descent based
method, relax the common bitrate constraints in gradient
descent. We propose to reduce bitrate cost via adaptive QP
selection, preventing information collapse and realizing the
optimization of image-level distribution. By leveraging a
joint global-local online optimization, our method achieves
more accurate alignment between the estimated and real
distributions and enhances the performance on each images.

Our contributions are summarized as follows:

• We propose a Cross-Granularity Online Optimization
strategy for learned image compression. The coarse-
grained per-sample optimization aligns the distribution of
the reconstructed signal to the original one at the image
level, and the fine-grained optimization further narrows
the distribution gap in a dense manner with structural
detail compensation, jointly achieving a more accurate
alignment between the estimated and real distributions.

• For fine-grained optimization, we design a Mask-based
Selective Compensation Module, which learn to encode
diverse structural distribution characteristics with neural
networks’ parameters. Therefore, during inference-time
optimization, the signals can be reconstructed using a
sparse representation, further reducing the rate-distortion
cost while efficiently compensating for fine-grained struc-
tural distribution information.

• For coarse-grained gradient optimization, we propose a
progressive bitrate contrainst strategy. By relaxing the
constraint of bitrate cost in training and decreasing it
through adaptive QP selection in inference, the risk of in-
formation collapse caused by a conventional variational
rate-distortion constraint are mitigated.

2. Related work

2.1. Learned Image Compression
Due to significant advancements in deep learning, in re-
cent years, deep learning-based image compression tech-
niques have surpass traditional methods in achieving an op-
timal balance between bit rate and reconstruction quality.
Initially, Ballé et al. [2, 3] were pioneers in using neural
networks to build lossy image compression autoencoders,
which sparked a wave of learned image compression meth-
ods. Many of these efforts expect to use the ability of
neural networks to fit real image distribution for remov-
ing more information redundancy through more efficient
transformations. Based on this idea, more efficient network
architectures are explored, including CNN-based architec-
tures [30, 32], Transformer-based architectures [20, 24, 26],
Transformer-CNN hybrid architectures [25] and so on. Be-
yond transformations, many studies have concentrated on
entropy coding of latent representations based on learned
probability models, such as hyper-priors [4] and context
models [10, 23]. Additionally, the incorporation of Gaus-
sian Mixture Models and attention-based modules further
boosted the performance of image compression [11].

In addition, there are some VQ-Based methods [16,
27, 41] that store diversified distribution through codebook
based on neural network parameters, enabling the selec-
tion of suitable representations for different samples. How-
ever, due to the limitation of codebook’s capacity and opti-
mization strategy, most of these methods are only suitable
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for ultra-low bitrates, lack the capacity of improving image
quality with increased bitrate. Unlike the previous methods,
our approach integrates end-to-end compression framework
with a VQ-based module. It delivers the primary content
through the end-to-end framework and sparse compensa-
tion data via the codebook, enhancing the codebook’s utility
across a broader range of bitrates.

2.2. Optimization in Image Compression
To tailor the compression method to each sample, an effec-
tive strategy is to perform per-sample online optimization
on each sample that needs to be compressed. In conven-
tional hybrid coding frameworks, an extensive online op-
timization is carried out for every sample. For instance,
in the latest VVC coding framework [8], Multiple Trans-
form Selection (MTS) is introduced to select the most de-
sirable transform, and 67 modes with diverse reference pix-
els are utilized for intra-frame prediction, which taking into
account the unique features of each sample’s local position.

In terms of deep learning-based approaches, there is also
many work trying to further perform per-sample optimiza-
tion under well-optimized global distributions to further op-
timize performance. For example, [17] optimizes the en-
coder by gradient descent, [39] uses ensemble learning to
select a transform model from a pool of models to compress
the image, and [38] optimizes both encoder and decoder
by transmitting additional model stream. However, most
of these methods only perform optimization at the image
level, and do not fully consider the local structural features
inside the image. In addition, there are some efforts based
on implicit neural representation [9, 22, 34] to achieve fine
optimization of image details by storing images in model
parameters through iterative optimization, but it is difficult
to apply to large-resolution images due to its high optimiza-
tion cost. In our work, we address the limitations of the the
above methods by designing a cost-effective approach for
cross-granularity optimization in neural networks.

3. Cross-Granularity Online Optimization
3.1. Preliminaries and Motivations
We start with the theoretical analyses of the rate distortion
theory following the symbolic expression of [43]. In Shan-
non’s seminal work [33], the rate-distortion function R(D)
for the given random variable source X in distribution PX

and distortion measure ∆(·, ·) is defined as:

R(D) = inf
PX̂|X

I(X; X̂),

subject to: EPXPX̂|X
[∆(X, X̂)] ≤ D,

(1)

where X̂ means the reconstruction characterized by distri-
bution PX̂ , I(·; ·) is the mutual information and E(·) is the

mathematical expectation. This function describes the infe-
rior limit of bitrate under a given distortion threshold D.

In a practical codec, considering the definitive sample x
in distribution PX , we can reformulate Eq. (1) through La-
grangian relaxation as an unconstrained optimization prob-
lem. Besides, the distribution PX̂ depends on the source
distribution and is unknown on the decoder side. Due to
the difficulty of modeling the distribution directly, most ex-
isting methods choose to introduce a new variable Y and
reformulate rate distortion function to:

L(PY |X , QY , PX̂|Y ) = Ex∼PX
[KL(PY |X=x∥QY )]

+ λEPXPY |XPX̂|Y
[∆(X, X̂)],

(2)

where QY denotes the modeling of distribution PY at the
decoder side, KL(·∥·) denotes the Kullback-Leibler diver-
gence and λ denotes a hyper-parameter which can adjust
the trade-off between rate and distortion. After that, in most
existing learning-based compression methods, encoder FE ,
decoder FD and entropy coding model are parameterized by
neural networks to fit PY |X , PX̂|Y and QY , which means

Y = FE(X|ϕE) and X̂ = FD(Y |ϕD), where ϕE and ϕD

are network parameters. Then, the objective becomes:

L(FE , QY , FD) = EPX
[− logQY (FE(X|ϕE))]

+ λEPX
[∆(X,FD(FE(X|ϕE)|ϕD)].

(3)

The network parameters are optimized with Eq. (3) and
shared across the entire dataset, rather than directly opti-
mizing Y for each sample x.

Although theoretically feasible to use enough parame-
ters in ϕE and ϕD to fully fit the distribution PY |X and
PX̂|Y , in practice it is difficult to achieve due to the expen-
sive costs and limitations of the neural network capabilities.
In fact, the estimated distribution typically only roughly fits
the general image signal distribution, falling short of per-
fectly matching the real distribution of each sample, which
causes the amortization effect [12].

To alleviate this problem, many strategies are proposed
to perform per-sample online optimization on FE for each
sample based on well-optimized ϕE . Furthermore, an ef-
fective strategy [38] introduces an additional latent variable
S, through which FD can also be optimized based on ϕD.
The per-sample optimization of FD can be performed by
gradient descent with the objective:

s = argmin
s

− logQS (s) + λ∆(x, FD(y|ϕD, s)) , (4)

where s and y are specific samples in random variables S
and Y respectively, and QS is the estimated distribution of
S. However, there are two notable issues:
• Absence of optimization for local structural distribu-

tion. Per-sample optimization through gradient descent
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Figure 2. The overall structure of our proposed image compression framework with cross-granularity optimization.

is expensive, so it can only be optimized at the entire im-
age level at most. However, fitting only at the image level
leaves gaps in the local structural distribution, where fine
structure loss and sampling randomness hinder optimiza-
tion through gradient descent alone.

• Model collapse caused by vanilla variational objective.
In practice optimization, due to the different dynamics of
y, s, the existing gradient descent strategy with objective
Eq. (4) might lead to the model collapse of s, making
it difficult to learn useful information in s, and the op-
timization results are unable to achieve the optimal rate-
distortion tradeoff.
In our work, we aim to adopt a novel method to address

both of these issues:

• For the first issue, we propose to combine an additional
fine-grained online optimization with the gradient de-
scent based coarse-grained optimization. On the basis
of coarse-grained gradient optimization which aligns the
distribution at the image level, the distribution gap is fur-
ther reduced effectively in a dense way by structural detail
compensation in fine-grained online optimization.

• For the second issue, we propose to relax the bitrate
cost constraint of s during gradient descent and decrease
its cost through adaptive quantization parameter search,
achieving a better rate-distortion trade-off.

The following sections describe our method in detail.

3.2. Cross-granularity Compensation Framework
3.2.1. Overall Structure
Our work builds on existing end-to-end image compression
framework [25] with hyper-prior for entropy estimation.

Beyond the baseline, we introduce a Mask-based Selective
Compensation (MSC) module and a Data-Dependent Trans-
form (DDT) module, through which we perform coarse-
grained and fine-grained online optimization, respectively.
The whole structure is shown in Fig. 2, in which the MSC
and DDT modules are marked as green and yellow.

For an image x to be encoded, we first perform inference
with the end-to-end encoder E(·) and quantize it, resulting
in an quantized latent ŷ:

ŷ = Q(E(x)), (5)

where Q(·) means quantizer.
Next, we extract and transmit a syntax vector from the

original image x to generate adaptive parameters φ at the
decoder side using the Data-Dependent Transform (DDT)
Module, which is described below. In this module, gradi-
ent descent based coarse-grained online optimization will
be performed on extracted syntax vector s to make it learn
the characteristics of the image-level distribution of sample
x. Then, parameters φ will be applied to the decoder to re-
alize the approximation between the estimated and the real
distribution at the image-level through sample dependence
transformation:

φ = DDT(x). (6)

After that, we calculate the residual before and after
quantization yres, and obtain the compensated feature yt
through the Mask-based Selective Compensation (MSC)
Module. This compensation feature is transmitted through
the index map idt. In this module, fine-grained optimization
is performed by mask-based selection to obtain the most ef-
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fective compensation yt of fine-grained structure distribu-
tion information, and it is combined with quantified latent
ŷ to compensate for local details and realize the approxi-
mation of the estimated and the real distribution at the local
structure level:

yres = y − ŷ,

yt = MSC(yres).
(7)

Finally, the compensated feature yt and ŷ are combined
at the decoding side to get ỹ and reconstruct image x̂ with
end-to-end decoder D(·) with the help of parameters φ ex-
tracted by DDT module:

ỹ = ŷ + yt,

x̂ = D(ỹ|φ).
(8)

In summary, our method considers three bitstreams that
need to be transmitted: quantized latent ŷ, index map idt
and syntax vector s. Our method uses an existing hyper-
prior model, so we do not go into its details here. Our over-
all optimization goal is:

L = R(ŷ) +R(s) +R(idt) + λ∆(x, x̂), (9)

where R(·) denotes the bit rate cost and we use mean-
squared-error as distortion measure in our method, which
means ∆(x, x̂) = ∥x− x̂∥2. These definitions will be used
later in the introduction.

3.2.2. Data-Dependent Transform Module
The network structure of DDT module is similar to [38]
and [21]. Specifically, in DDT encoder EDDT, features
at multiple scales are extracted by multi-layer convolu-
tion, which are globally average pooled and concatenated
into a compact one-dimensional vector s. In this way, the
extracted features have multi-scale information and glob-
ally consistent characteristics at the same time, which is
more suitable for fitting the distribution at the image level.
Then, unlike [38], the vector s is quantized through a quan-
tizer Q(·, ·) with adjustable quantization parameter λt, and
performs compression with an arithmetic codec based on
standard Gaussian distribution. Finally, s generates a set
of adaptive convolution kernel parameters φ through the
DDT decoder DDDT, which is a multi-layer perceptron with
residual. And φ acts as parameters of the last convolution
layer of decoder D. The full process is expressed as:

s = Q(EDDT(x), λt),

φ = DDDT(s).
(10)

3.2.3. Mask-based Selective Compensation Module
Mask-based Selective Compensation module contains a pair
of convolution-based autoencoders EMSC(·) and DMSC(·),
a pair of vector quantization codec modules EVQ and DVQ,

and a codebook Z = {zk}Kk=1 ∈ Rn that stores diverse
structural distribution characteristics.

In the MSC module, we first perform pre-selection. Af-
ter obtaining the compensation feature yc ∈ Rh×w×n by
the MSC Encoder EMSC, each pixel in the feature will find
the corresponding quantization vector in the codebook via
the EVQ and get the quantized compensation feature ŷc and
the corresponding index map idc:

ŷc, idc = argmin
zk∈Z,idk

∥zk − yijc ∥+ λcR(idk), (11)

where λc denotes the trade-off parameters which will be
determined by online optimization.

We then perform a sparse masking operation on the pre-
selection results to selectively transmit the most beneficial
information, thereby achieving greater performance gains.
A sparse representation mask M is then generated by fine-
grained optimization and computes the sparse compensa-
tion representation idt:

idt = idc ⊙M, (12)

where ⊙ means element-wise multiple. Considering the
sparsity of idt, it is encoded by global probability distri-
bution Qt when it is transmitted. Finally, DVQ looks up the
codebook Z to get the corresponding vector through the idt
to form the sparse compensation feature ỹc.

3.3. Cross-Granularity Optimization Strategy
As mentioned above, our method employs both coarse-
grained and fine-grained online optimization strategies dur-
ing inference, aiming to minimize the gap between the pre-
dicted distribution and the real distribution under two levels
of signal distribution, i.e., image-level and local structure
distributions, respectively.

3.3.1. Coarse Optimization
In coarse-grained optimization, our target is to minimize the
gap between the estimated general distribution and the real
distribution of a single sample at the image level. Simi-
lar to most existing methods, we performed coarse online
optimization on network parameters through a gradient de-
scent strategy to optimize network parameters at the image-
level. In order to avoid the model collapse mentioned above,
we split the strategy of performing gradient descent with
Eq. (4) as the optimization objective function in the previ-
ous method into two stages.

Firstly, in the process of gradient optimization on DDT
Encoder, the bitrate cost constraint on syntax s is relaxed,
and the optimization objective is modified from Eq. (4) to:

s = argmin
s

∆(x, FD(y|ϕD,DDDT(s))). (13)

Then, starting with a large initial value, a binary search al-
gorithm is employed to iteratively adjust the quantization
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parameter λt, aiming to achieve the optimal trade-off be-
tween the syntax vector’s bitcost and performance.

3.3.2. Fine Optimization

In fine-grained optimization, we focus on the local struc-
tural details of the image. Due to the quantization and in-
herent randomness involved in the image sampling process,
the image exhibits discrete characteristics in these local de-
tail distributions. This property makes it impossible for gra-
dient descent methods to further fit these local structural de-
tails on the training data in an offline setting. In order to
achieve online optimization on local structural details, we
propose to use a sparse representation strategy to compen-
sate for these structural details. The optimization process is
divided into the following steps:
Pre-Selection Tradeoff Optimization. In the process of
sparse compensation with the MSC module, we need to
balance the cost of sending compensation features with the
benefits they bring. In the pre-selection stage, since the fea-
ture yijc is the vector that can achieve the maximum perfor-
mance gain without considering the transmission cost, for a
certain feature yijc , the closer the matching vector zk from
the codebook is to yijc , the more benefit it might given, so
the benefits can be represented by the L1 norm of yijc and
zk. However, this L1 norm serves only as an approximate
measure of performance gains and does not establish a strict
positive correlation with ∆(x, x̃). Thus, when balancing
the rate-gain trade-off, it is not possible to directly ascer-
tain a suitable λc that aligns perfectly with λ in Eq. (3).
In order to achieve the alignment of λc and λ, we perform
a binary search strategy to find λc with the lowest global
Rate-Distortion Loss.
Sparse Masking Optimization. Through the pre-selection
process, we search for a corresponding quantized vector for
the features of each position. However, not all vectors can
provide sufficient positive effects for correcting local struc-
tural information compensation, and the gains brought by
a large part of the vectors cannot cover the losses caused
by their rate costs. To achieve optimal cost performance in
transmitting compensation information, we design a sparse
mask optimization strategy that masks vectors offering in-
sufficient gain.

The sparse masking optimization operates for each pixel
in the compensation feature map ŷc. First, the compensa-
tion feature is independently injected into position a through
element-wise addition. Then, the decoder D reconstructs
the image with this modified feature, enabling calculation
of the loss differential between pre- and post-compensation
states. This performance then determines the binary mask-
ing decision: contributing positions (mask value = 1) acti-
vate feature transmission, while non-contributing positions
(mask value = 0) are pruned from the transmission to opti-
mize bitrate cost.

3.4. Progressive Multi-Stage Training Strategy

To enhance the alignment between end-to-end neural net-
work parameters and real-world data distributions while
establishing an expanded optimization potential for cross-
granularity online optimization strategies, we propose a
progressive training strategy consisting of sequentially op-
timized multiple training stages. We start the training by
loading the pre-trained model parameters of the baseline
end-to-end network, then we train the DDT module on the
basis of these parameters, and ultimately conclude with
training MSC module.

Training Strategy of DDT Module. Similar to coarse opti-
mization, we also relax the rate constraint on syntax vector
s during gradient descent based training process. The loss
function is as follows:

LDDT = − logQY (y) + λ∆(x̃, FD(FE(x)|ϕD, s)). (14)

Training Strategy of MSC Module. The training process
of the MSC module comprises two parts: the training of the
MSC Encoder/Decoder and the training of the codebook.

Initially, we focus on training the MSC Encoder and De-
coder. To do this, we remove the VQ Encoder EVQ and
the VQ Decoder DVQ from the network architecture, which
eliminates the vector quantization operation applied to yc.
With these components removed, we keep the rest of the
network fixed and train the MSC Encoder/Decoder inde-
pendently. The loss function utilized for this training is
the Mean Squared Error (MSE) between the reconstructed
image and the input image. After completing this training
phase, the MSC Encoder/Decoder can extract the relevant
compensation information from the residual yres.

Next, we proceed with training the codebook Z. Our ap-
proach adopts the training strategy in the existing work [13],
wherein the gradient is propagated from the decoder to the
encoder [7], enabling end-to-end training of both the model
and the codebook through the loss function:

LMSC = ∥x− x̂∥2 + ∥sg[EMSC(yres)]− zq∥22
+ ∥sg[zq]− EMSC(yres)∥22,

(15)

where zq represents the vector selected from the codebook
and sg[·] denotes the stop-gradient operation. To maximize
the activation of vectors in the codebook and learn a diverse
and rich structural distribution, we implement a warm-up
training phase prior to selecting the vector zq using the strat-
egy outlined in Eq. (13). During this warm-up period, zq is
randomly chosen from the codebook to minimize the dis-
tance between all the vectors in the codebook and yc, thus
mitigating the issue of low codebook activation rate.
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Figure 3. Visual results compared to BPG [6] and Liu (CVPR-23) [25].

4. Experiments

4.1. Implementation

Network Implementation. Specifically, we implement our
network on the basis of existing end-to-end learning based
image compression methods [25], and the parameter setting
follows its small model setting (channel number of TCM
block is 128) which is completely open source. The code-
book size K is set to 4096, which is an appropriate value
based on experimental attempts. In order to reduce the
correlation between pixels of sparse representation idt and
avoid the effect of partially masked pixels on the reconstruc-
tion of surrounding pixels, MSC Encoder and decoder use
multiple layers of 1 × 1 convolution without bias. The de-
tailed structure and hyper-parameters of the networks are
shown in the supplementary material.
Training Details. We use DIV2K image dataset [1] as our
training dataset, which contains 800 high-quality natural
images with an average 2K resolution. We use the Adam
optimizer [18] in each phase of the training, and train 5
models with different compression rates based on differ-
ent bit rates end-to-end baseline parameters [25], with λ in
{2.5 × 1−3, 3.5 × 1−3, 6.7 × 1−3, 1.3 × 1−2, 2.5 × 1−2}.
For the global probability distribution Qt, we randomly se-
lect 50 images in the training dataset as a validation set, and
calculate the distribution of idc as an estimate of the global
probability distribution Qt. More training details are pro-
vided in the supplementary material.
Inference Details. In the inference phase, our method
performs multi-stage cross-granularity online optimization.
For coarse optimization based on gradient descent, we ad-
ditionally employ the Adam optimizer with a learning rate
1 × 10−5 to finetune the DDT encoder for 100 iterations.
For binary search for λt and λc, the search ranges are set to
[0, 100] and [0, 1], respectively.
Evaluation Protocol. We evaluate our method on the pro-
fessional subset in the CLIC validation dataset [36] and Ko-
dak image dataset [19]. The Kodak image dataset contains
24 images with resolutions of 768×512. The CLIC profes-
sional validation dataset comprises 41 images with higher
resolutions of about 2K resolutions. The performance is
measured by both bit-rates and distortions. We present the
bit-rate in bit-per-pixel (bpp) and distortion in Peak Signal-
to-Noise Ratio (PSNR). The R-D curves and BD-rate [14]

are utilized to compare different methods and settings.

4.2. Quantitative Comparison
We compare our method with existing end-to-end learned
image compression methods optimized for MSE [11, 15,
24, 25, 40, 46] and conventional compression framework
BPG [6] and VVC [8]. Specifically for VVC, we use refer-
ence software VTM-12.1 in the evaluation.
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Figure 4. R-D performance evaluated on the CLIC Professional
Validation dataset. The compared methods include state-of-the-art
LIC models and conventional image codecs.

The R-D curves on CLIC Professional validation sets for
our proposed method and comparison methods are shown
in Fig. 4. Furthermore, we report the BD-rates [14] results
in Table 2 to quantify the average bitrate savings with equal
reconstruction quality, with BPG as the anchor. As can be
seen, with the addition of cross-granularity online optimiza-
tion, our approach yields substantial performance gains by
more than 2% over our baseline Liu (CVPR-23) [25] with
only a 2% increase in parameters. Meanwhile, it also out-
performs the latest learned image compression method [24],
which has about 60% more parameters than ours. In gen-
eral, our method achieves state-of-the-art performance and
outperforms BPG by 35.21% and 43.86% in BD-rate on the
Kodak and CLIC dataset, respectively. The results of Kodak
dataset are provided in the supplementary material.

We also provide the complexity analysis of our method
in Tab. 1. As a strategy trading time for performance,
optimize-based method naturally has a higher encoding
time. But we achieve comparable encoding time with
widely used VVC [8] and similar decoding time with our
baseline Liu (CVPR-23) [25].
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Table 1. Time complexity for a 768×512 image.

Method Enc. Time Dec. Time

VVC [8] 31.53s 0.06s
Ladune (ICCV-23) [22] 64.97s 0.07s

Catania (ACMMM-23) [9] 147.27s 0.13s
Liu (CVPR-23) [25] 0.25s 0.24s

Ours 36.34s 0.25s

Table 2. BD-rate results and complexity based on CLIC Profes-
sional Validation dataset [36]. We set BPG [6] as the anchor in the
calculation. The best results are shown in bold.

Method Param BD-Rate

VTM-12.1 [8] —— -34.64%
Cheng (CVPR-20) [11] 26.60M -29.93%
Xie (ACMMM-21) [40] 47.55M -33.37%

He (CVPR-22) [15] 38.52M -38.26%
Zou (CVPR-22) [46] 99.58M -36.84%
Liu (CVPR-23) [25] 42.89M -41.65%
Li (ICLR-24) [24] 70.97M -42.80%

Ours 43.76M -43.86%

4.3. Qualitative Comparison

We also compare our method with others in visual quality.
The results are shown in Fig. 3. It can be clearly seen that
the conventional coding method BPG can reconstruct rel-
atively sharp detailed structures through the modes selec-
tion strategy on small coding unit, but its limited flexibil-
ity hinders its ability to effectively capture the overall dis-
tribution of input samples, leading to noticeable artifacts.
Learning-based method Liu (CVPR-23) [25] improves the
fitting ability of the overall distribution through the neural
network, but it performs poorly on the fine structure because
it cannot adequately fit the fine-grained distribution. Our
cross-granularity online optimization strategy enhances its
fine structure performance while maintaining a better mod-
eling of the overall distribution, and performs better on both
fine structure characterization and overall distribution char-
acterization. More qualitative results are shown in the sup-
plementary material.

4.4. Ablation Studies

Effectiveness of DDT and MSC Module. In our approach,
coarse-grained and fine-grained online optimizations are re-
lated to the DDT and MSC modules, respectively. There-
fore, we first verify the performance of the combination of
adaptive QP selection + DDT module and masked selection
+ MSC module. The results are shown in Fig. 5-(a). w/
DDT means that only DDT module + adaptive QP selection
is added, and w/ DDT&MSC means that DDT module +
adaptive QP selection and MSC module + masked selection
are added at the same time. It can be seen that with the ad-

(a) (b) (c)

PS
N

R

Figure 5. Ablation studies results on the Kodak dataset [19].
[Zoom in for best view]

dition of these two combinations, baseline performance are
further increased.
Effectiveness of Adaptive QP in DDT Module. Later, we
separate the DDT module and the adaptive selection strat-
egy, independently verify the role of the adaptive selection
strategy. The result is shown in Fig. 5-(b), w/o AS indi-
cates the result when the adaptive selection strategy is not
used, and w/ AS indicates the result when the adaptive se-
lection strategy is used. As we can see, in the absence of
an adaptive selection strategy to relax bit rate constraints, it
is difficult for the DDT module to learn rich information to
improve the overall performance of the model.
Effectiveness of Mask-based Selection in MSC Module.
Finally, we separate the mask-based selection strategy from
the MSC module to verify the role of the mask-based se-
lection strategy. The result is shown in Fig. 5-(c). w/o MS
indicates the result when the mask-based selection strategy
is not used, and w/ MS indicates the result when the mask-
based selection strategy is used. In the case that mask-based
selection is not used to extract the sparse representation yt,
but all compensation information yc is transmitted directly,
although the compensation information will bring a cer-
tain reconstruction quality gain, it is still inferior from the
perspective of rate-distortion trade-off because the overall
compensation cost is too high.

5. Conclusion

In this work, a novel cross-granularity online optimization
strategy is proposed to address the amortization effect in
learned image compression. In the coarse-grained optimiza-
tion, gradient descent with adaptive QP minimizes image-
level distribution gaps. In the fine-grained level, masked
sparse compensation selectively restores structural details
under bitrate constraints. Through the joint optimization
of global and local distributions, our method achieves bet-
ter statistical alignment with real image statistics while im-
proving compression performance. Experimental evalua-
tion shows the superiority of our proposed approaches.
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